
Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:
NoEsc

THEME:
AI Programming and User
Experience

PROJECT PERIOD:
SP2,
February 4th 2009 -
June 4th 2009

PROJECT GROUP:
sp201a

GROUP MEMBERS:
Anders Ejlersen
Anders Tankred Holm
Rasmus Kristensen
Kim Jung Nissen
Mads Bøgeskov

SUPERVISOR:
Rene Rydhof Hansen

NUMBER OF COPIES: 8

REPORT PAGES: 63

APPENDIX PAGES: 12

TOTAL PAGES: 75

SYNOPSIS:

This report describes the process of us-

ing the Source SDK to develop NoEsc

a stealth first person game with an ap-

pertaining Artificial Intelligence. Since

the Source Engine was a required part

of the project, the game had to made

to fit this. The AI should work as the

player opponent and was called Aslan,

Automated Search and Locator AN-

droid. Several AI techniques has been

analysed, and a behaviour tree was cho-

sen as the structure as the AI. The

game was tested on two groups and it

was found that the AI seemed intelli-

gent and the game itself was found to

be amusing, though hard.

Preface

This report has been written during the SP2-project period, by group sp201a
at Aalborg University. The main theme is Artificial Intelligence (AI) Pro-
gramming and User Experience. This report is addressed to other students,
supervisors, and anyone else who might be interested in the subject. To
read and understand the report correctly, it is necessary to have knowledge
equalling a bachelor in computer science and basic knowledge concerning AI
and user experince.

The entire report is written in English and no translation will be acces-
sible. Abbreviations and acronyms will at first appearance be written in
parenthesis, to avoid breaking the reading stream. Specification of gender in
the report is not to be understood as suppression or any other form of po-
litical/religious position. The gender is only specified to simplify the process
of writing for the authors.

References to sources is marked by [#], where # refers to the related
literature in the bibliography at the end of the report.

The appendix to the report is found in the last chapter of the report,
and on a DVD, located on the very last page of the report. The source code
created under the project is also located on the disc.

The report is written in LATEX and is accessible as a PDF-document,
which can be read with Adobe Acrobat Reader.

Project group sp201a
Anders Ejlersen Anders Tankred Holm

Rasmus Kristensen Kim Jung Nissen

Mads Bøgeskov

2

Acknowledgements

Valve R©, Source
TM

, Steam
TM

, Half-Life
TM

, and Half-Life2
TM

are either reg-
istered trademarks or trademarks of Valve in the United States and other
countries. All other trademarks are the property of their respective owners.

For testing:

• SW802B

– Mogens Kraus

– Mikkel Søbye

– Lars Kaastrup Vinther

• SW803A

– Peter Heino Bøg

– Allan Mørk Christensen

– Morten Justesen

– Martin Midtgaard

– Anh Tuan Nguyen Dao

– Luxshan Ratnaravi

For advice and inspiration:

• Nicolaj Søndberg-Jeppesen

• Yifeng Zeng

3

Contents

1 Introduction 7

2 Game Design 8
2.1 Game Summary . 8
2.2 Game Rules . 11
2.3 Visual Style . 11
2.4 AI Specification . 12
2.5 Difficulty . 13
2.6 Summary . 14

3 Source SDK 15
3.1 Overview . 15
3.2 Existing AI . 16
3.3 The Code . 16

3.3.1 HUD . 16
3.3.2 Console . 17
3.3.3 Entities . 17
3.3.4 NPC Creation . 17
3.3.5 Think . 18
3.3.6 Sounds . 18

3.4 Hammer Editor . 18
3.5 Summary . 20

4 Artificial Intelligence 21
4.1 Artificial Intelligence in Games 21
4.2 AI Techniques . 22

4.2.1 Decision Trees . 22
4.2.2 Behaviour Trees . 23
4.2.3 Fuzzy Logic . 25
4.2.4 Bayesian Networks . 26
4.2.5 Neural Networks . 29

4

4.2.6 Choice . 31
4.3 Summary . 31

5 Design 32
5.1 Behaviour Tree . 32

5.1.1 Constraints . 32
5.1.2 Choices . 33
5.1.3 Node Types . 33

5.2 BTTool . 34
5.3 AI Architecture . 36

5.3.1 Squad . 37
5.3.2 Communication . 39
5.3.3 Decision . 39

5.4 Level . 44
5.4.1 Nodes . 45

5.5 Summary . 46

6 Implementation 48
6.1 Programming in Source . 48

6.1.1 Creation of Aslan . 48
6.1.2 Difficulty Levels . 51
6.1.3 Custom Nodes . 52

6.2 Level . 53
6.2.1 Intro sequence . 53
6.2.2 Objectives . 54

6.3 Summary . 55

7 Testing 56
7.1 Sound Selector Test . 56
7.2 Play-testing . 57

7.2.1 The Test . 58
7.3 Summary . 58

8 Epilogue 60
8.1 Reflection . 60

8.1.1 Source SDK . 60
8.1.2 BTTool . 60
8.1.3 NoEsc . 61

8.2 Conclusion . 61
8.3 Further Development . 62

8.3.1 Content . 62

5

8.3.2 Additional Behaviour 63

A Playtesting: SW802B 66
A.1 Group SW802B . 66

B Playtesting: SW803A 69
B.1 Group SW803A . 69

C Screenshots 71
C.1 NoEsc Pictures . 71

D DVD 75
D.1 DVD Content . 75

6

Chapter 1

Introduction

The main topics of the SP2 semester are AI Programming and User Experi-
ence, and the task has been to develop a game with an AI using the Source
Engine. Developing a game includes analysis, design, implementation, and
lastly testing of the game.

The goal of the group is to create a singleplayer game called NoEsc which
contains computer controlled opponents, that works as the player resistance.

The vision is to create a game that takes place in an office building, where
the mission is to hack different objectives. When all objectives has been
hacked the player should run to the exit and complete the level. The com-
puter opponents are authorities trying to stop the player from hacking the
objectives. The authorities are not aware of the players position and must
therefore work together in squads to try to locate the player by searching
the building. The player should compete against the authorities by hiding
from them, and distracting them. Lastly the game should provide different
difficulty settings to suit the players skill level.

The vision entails technical challenges for the construction of a proper AI
and also the use of the Source Engine. Another challenge in the game design
is to make the game balanced and fun. Therefore it is necessary to set the
proper difficulty values for the different difficulty settings.

Some screen-shots of the final product can be seen in Appendix C.1 on
page 71 and a list of the content on the DVD can be seen in Appendix D.1
on page 75.

7

Chapter 2

Game Design

This chapter introduces the game concept for NoEsc. This covers the story,
game rules and the visual style of the game, and lastly the capabilities of the
Non-Player Character (NPC). First the game summary introduces the story
line, giving a short introduction to the game concept. Next the game rules are
introduced, which covers the player objectives and some basic requirements
of the NPC. Then the visual style of the game is covered, which introduces
the environment the story occurs in. Afterwards the job tasks are covered
for the NPC, which are the actions the NPC has to be able to do, when
interacting with the environment. Lastly the different difficulty levels and
their differences are described.

2.1 Game Summary

NoEsc takes place in the present where the country has been taken over by
a corrupt government. The protagonist is an underground terrorist whose
speciality is to gather information by infiltrating government buildings.

The game starts at the point where the protagonist just has gained access
into the building. Here she receives a message telling her that the building is
being searched and that government forces will try to capture her alive, see
figure below.

The authorities will attack the building from three points and will then
search through the entire building to find her. The forces will split up into
squads, but because of a technical error they can not use the radio. This
means that they have to rely upon their own information and updates when
meeting other squads.

The game focus is stealth, which must be utilised by the player throughout
the game to get unnoticed to the objectives. The inspiration for a game like

8

this are games such as Tom Clancy’s SplinterCell[1] and Thief[2]. However
these games enable the player to incapacitate the opponents which is a feature
NoEsc will not support to force stealth.

9

2.2 Game Rules

The goal of NoEsc is to hack seven computers and then escape through the
front door located in the lobby. In order to accomplish this the player must
use stealth to sneak around in the building and distract the NPCs with
sounds. The player is able to pick and throw chairs and bottles to make
sounds to attract the NPCs to the source of the sounds. This way the player
can distract the NPCs while she is moving from one place to another. Besides
sounds the player is able to hide in rooms and offices to keep out of view of
the NPCs. An alarm is placed in the office building, and the player needs to
avoid triggering it. If the alarm is triggered the alarm will attract NPCs and
doors will seal the area where the alarm is placed to capture the player.

The player player has an cloaking ability, which can be used if the player
gets into a situation that she cannot rescue herself from. The cloaking ability
can however only be used one time.

The NPCs searches through the building with the sole goal of finding the
protagonist. As mentioned it reacts to sounds such as footsteps, bottles and
chairs. If an NPC sees the player it will run towards her and try to get into
range to hit her with its stun stick. The NPCs will not wander around alone,
but rather in squads of two or more. The general tactic when storming a
room is to keep a guard at the door and then let the rest of the squad search
the room.

2.3 Visual Style

The visual style must represent the environment described in the story. The
office building is very boring and depressing in the areas where the people
work in cubicles. These rooms can only have standard office lighting to
further emphasise it.

The rooms that represent the building when there are visitors, such as
the auditorium or the management offices, must be more interesting. This
can be achieved with items such as fish tanks, but also with the sunlight
through windows.

The Heads Up Display (HUD) of the game will only contain an overview
map and game text. The overview display shows a floor plan with the objec-
tives and the location of the NPCs storming the building. The player will not
have access to any weapons so there will be no indicators for this. When the
player interacts with an objective, a progress bar will be shown. Lastly when
objectives has been hacked, the number of objectives remaining is displayed.
In Figure 2.1 on the following page a illustration of the HUD can be seen.

11

Objective Completed..

Hacking...

Figure 2.1: A mock-up of the HUD in NoEsc.

2.4 AI Specification

The NPC in NoEsc is called Automated Search and Locator ANdroid (Aslan).
These tasks are specified in this section and together describe the overall
behaviour of Aslan.

Search: The primary goal of Aslans is to search for the player in a building
consisting of rooms, cubicles and hallways. Therefore Aslan has to be
able to do the following:

Path: Know where it has been and where to go.

Find: Be able to prioritise rooms where the player might be hiding.

Squad: A squad based behaviour both as leader and as squad member:

Leader: The leader needs to co-ordinate the members of the squad to
do certain tasks, like guarding the entrance to a room, searching
the room, and so on.

Member: The member needs to follow the orders of the leader and
report in if meeting other squads or seeing the player.

Communication: Communication between other Aslans could be the fol-
lowing:

Player: If the player is spotted/heard Aslan needs to yell that it has
seen the player or investigating a sound source.

12

Meeting Aslans: Either needs to exchange last searched locations or
if an Aslan is not in a squad tell to form/join a squad with the
other Aslans.

Orders: If the leader needs to give orders to the squad members, or if
member needs to receive orders.

Attack: When the player is located Aslan needs to do the following:

Chase: Chase the player and try to pacify her.

Escape: If the player escapes, then Aslan needs to check the last
known position of the player and afterwards return to its squad.

Distraction: Aslan should be able to be distracted from previous actions,
except if Aslan is engaging the player, by the following:

Alarm: If an alarm goes off in the vicinity, then Aslan should investi-
gate the source.

Running: If a running sound is heard, then Aslan should investigate
the source.

Other: If distracted by another sound source, like a bottle, then Aslan
should investigate.

When the game starts the Aslans will spawn at different locations in the
map. They will then be split up into squads, each with a dedicated leader.
These squads will then go and search the building. Whenever a squad meets
another squad they will interchange information such as sightings, sounds,
and recently visited locations. This will make sure that if an Aslan has
been chasing the player then he will inform other Aslans about it, also the
interchange of locations will ensure that the Aslans will not search the same
area again and again.

2.5 Difficulty

The game should have different difficulty settings, which allows the player
to choose the setting that fits the current skill level of the player. There
are different parameters which can be altered to change the difficulty level,
which are listed here:

• Senses like sight and hearing.

• Numbers of opposing players.

13

• Mini map visible to the player.

• Damage caused by opposing players.

These three elements can be adjusted to give the player different difficulty
settings. The following is an example of the three difficulty settings that could
be used:

Easy: Allowed a mini map where the Aslans are illustrated, low number of
Aslans, low amount of damage caused and all Aslans has short sight
and narrow view angle.

Medium: Allowed a mini map, where the Aslans are illustrated at close
proximity, medium number of Aslans, medium damage caused and all
Aslans has medium sight and medium size view angle.

Hard: Allowed a mini map, high number of Aslans, high amount of damage
caused and they have long sight and a large view angle.

These three settings could also reflect upon the hearing sense of the
Aslans, such that foot steps are prioritised lower at easy setting, then on
medium or hard setting. Moreover the speed of the Aslans could also be
reflected upon in the settings and the number of cloak available.

2.6 Summary

This chapter covered the foundation of the game: This includes the visual
appearance, the overall game idea, the rules of the game, and the specifica-
tion of how the Aslans has to work. The story and the visual style is bound
together to form a modern office building game world, that reflects the cor-
ruptness of the world. The game rules tells how each party of the game, the
Aslans and the player, tries to win. In addition to this the difficulty levels
of NoEsc was defined to determine which differences easy, medium and hard
difficulty should have. The next step to create the game is to get a closer
look at the Source SDK.

14

Chapter 3

Source SDK

In 2004 Valve released the second chapter in the Half-Life series[3]. Like with
the release of the first title Valve chose to include a Software Development
Kit (SDK), to allow third party developers to create their own games based
upon the same engine as Half-Life2, the Source Engine. This type of game is
usually known as a Modification (Mod), and can be made available to owners
of Half-Life2.

Half-Life2 is a First Person Shooter (FPS), and the Source Engine it is
built upon is therefore created to make a first person game. Therefore the
Source Engine supports NoEsc as it is a first person game.

The Source SDK is a requirement of the project and it is therefore needed
to have a basic knowledge of the possibilities of the tools available. The first
part of the chapter will provide a basic overview of the Source SDK. After
this the main parts of the Source SDK will be described.

The source for this chapter is the Valve Developer Community[4].

3.1 Overview

The Source SDK is available through Valve’s Steam platform. Steam is a
platform to distribute games digitally. The Source SDK is dependent upon
Steam and can only be utilised if the user owns Half-Life2.

The Source SDK contains two main parts, the code and the Hammer
Editor. The code is split up into a client and a server, as the Source Engine
is designed to create multiplayer as well as singleplayer games. The client is
where e.g. the HUD is defined, and the server contains e.g. the game logic
functionality. The other part namely the Hammer Editor is used to create
the level and attach the game logic to this. The connection between the
code and the Hammer Editor is done through a script file called Forge Game

15

Data (FGD) data. This means that entities can be made in the code, then
added to the FGD file, and finally the entity can be used in the level via the
Hammer Editor.

3.2 Existing AI

The Source SDK provides basic AI functionality that developers can use
when making a Mod. This includes pathfinding and a customisable sensing
system to enable the NPCs to see and hear. This means the developers can
decide how far and how wide the NPC can see.

The Source SDK also provides a scheduling system to control AI. This
schedule system will be filled with schedules containing tasks. the AI must
then perform these tasks, and execute them in the appropriate order. Stan-
dard schedules are provided with the Source SDK such as attack. The last
major part of the bundled AI is the squad handling system, which also is
handled in the scheduling system.

3.3 The Code

When a Mod is to be created the basic building blocks for the Mod is written
into the code. These building blocks along with the default functionality in
the Source Engine can be used in the Hammer Editor. This section provides
an overview of the different parts of the code that is provided. The HUD
is the element to be discussed. Then the console with the variables and the
commands within it will be discussed. Afterwards the topic to be explained
is entities and their central role in the Source Engine. Furthermore the sound
system of the Source Engine is discussed. Lastly the creation of a new NPC
and nodes are explained.

3.3.1 HUD

The HUD system is placed in the client. The visual appearance of the HUD
elements are defined in a script file, which is placed beside the compiled
code. The script contains settings like placement on the screen, graphics,
colour and so forth. However a HUD element has to be defined in the code,
where it is an object which inherits from the CHudElement and vgui::Panel

classes. An advantage of having the HUD defined in a script is that the code
does not need to be compiled when the HUD is changed.

16

3.3.2 Console

The Source Engine provides an in-game console. The console is mainly for
development purposes as a command can be executed or a variable can be
changed. This can be used to tweak the game, e.g., change the running speed
of the player, or to execute a special function. Therefore the console can be
time saving, such that the code does not have to be recompiled each time a
change has to be tested.

There are two types of entries to the console, a convar and a concommand.
The convar is a variable that is defined in the code, which can be temporarily
changed through the console. An example of how a convar is defined can be
seen Listing 3.1.

1 ConVar in_code_name ("in_console_name" ,"default_value") ;

Listing 3.1: Definition of a convar.

The concommand is also defined in the code, but however does not represent
a variable, but executes a specified function in the code.

3.3.3 Entities

In Source SDK everything is an entity, NPCs, models, sound emitters and
so on. Some entities can be seen, like models, and some cannot, like sound
emitters. Because of this everything shares some common functionality, e.g.
an identifier, so it is possible to differentiate between the different entities.
Therefore to find an entity of a specific type, a global variable in the code is
provided, namely g EntList. This variable contains a list of all the instanti-
ated entities and can be searched to find entities of a specific type.

A node is an entity in the game world that contains information, e.g.
ai nodes contains links to other ai nodes, which are used for navigation.
Ai nodes are standard functionality and can be placed in-game using the
Hammer Editor. These nodes however are designed for the already existing
pathfinding system implemented in Source Engine.

If another type of node is needed it can be created in the code. Such a
node is created by making a class that inherits from the CPointEntity class.
Methods and variables to contain information can then be added to the node
class, to enable it to handle custom tasks.

3.3.4 NPC Creation

When a new NPC has to be created, a template called monster dummy can be
used as the base. This template contains the basic functionality for a NPC

17

in the Source Engine. This however relies on a scheduling system to handle
movement, attack, and general behaviour. This default behaviour is based
upon the behaviour needed in Half-Life2 and is therefore not desirable in all
cases. If this scheduling system is disabled the functionality for movement
and attack has to be re-implemented manually.

3.3.5 Think

In the code there are some entities that implements a Think function. The
function is called from the lower parts of the engine with a given interval. This
interval can be set from call to call with the function shown in Listing 3.2.

1 SetNextThink (gpGlobals−>curtime + 1.0 f) ,

Listing 3.2: Sets when to think next.

which in this case will create a delay of one second before the next call.
The Think function is used in, e.g., a NPC to enable it to handle the AI

code with a given interval.

3.3.6 Sounds

The sound system of the Source SDK uses a script system to define the sound
with name, volume, sound files, pitch and so on. When these sound scripts
are specified the sound can be used on any entity from within the Hammer
Editor or the code. An example of how a sound could be played from the
code is shown in Listing 3.3.

1 entity−>EmitSound ("Sound.Name.From.Script") ;

Listing 3.3: Code to make entity emit sound.

The command plays the sound with the entity location as the source location
of the sound.

3.4 Hammer Editor

The Hammer Editor is the tool used when designing levels for Source based
games, and is a part of the Source SDK.

The Hammer Editorcan be used for the creation of level architecture:
Geometry, texturing and lighting. When placing a model in the Hammer
Editor there are three options for the entity type to which the model will
be assigned: Static, dynamic and physic. A static entity is an object that

18

can not be affected by anything in the game world. A dynamic entity can
be animated and/or be moved with another entity. The last is the physics
entity which can be thrown around by other entities in the game world, e.g.
by the player, this object is controlled by the physics system.

Models can be made in other 3D modeling applications such as Maya
or 3D Studio Max, and later imported into the Hammer Editor by adding
the model to a FGD file. The Hammer Editor needs its models in a special
file format called mdl, which is created by taking the model from the 3D
modeling application and converting it through studiomdl. Studiomdl is a
model converter, and is also a part of the Source SDK.

The Hammer Editor can also be used to place various kinds of entities to
control the gameplay, like entities for scripting input and output.

Source Engine provides its own AI as seen in Half-Life2. This AI can be
scripted in the Hammer Editor and then assigned to NPCs.

A picture of the Hammer Editor can be seen in Figure 3.1, where the
player entity is visible.

Figure 3.1: The Hammer Editor with a player entity.

19

Compiling

A level that is to be used in the Source Engine has to be compiled. This is
because several things has to be prepared before a level is compatible with
the Source Engine, e.g. the level must have a Binary Space Partition (BSP)
tree, and all lightmaps must be created.

The Hammer Editor provides three compilation tools to create a level:
VBSP, VVIS and VRAD.

1. VBSP: Generates the BSP, which in effect is the map. It uses the
brushes and entities created in the Hammer Editor to construct the
architecture of the level.

2. VVIS: Determines what is visible in the map and then ignores items
that cannot be seen, such as lights and geometry.

3. VRAD: Computes the light maps, and High Dynamic Range Imaging
(HDR) lighting.

The Hammer Editor is able to run all of these tools in the right order and
then return a BSP file that can be used in the game.

3.5 Summary

The Source SDK has been covered in this chapter, where an overview of
the Source SDK has been described. Furthermore the important parts of
the code for this project of the Source SDK has been covered. Lastly the
level and scripting tool, Hammer Editor, has been covered, including the
compiling process of a level created in the Hammer Editor.

20

Chapter 4

Artificial Intelligence

This chapter first introduces AI used in games followed by different AI tech-
niques, which can be used in creating a NPC for a game. The last section
describes the choice of AI technique that will be used in the game.

4.1 Artificial Intelligence in Games

The source of this section is Artificial Intelligence for Games[5]. In a game
the AI is used to enhance the player experience in such a way that it either
can provide the player with resistance or try to help the player reach a goal.
An AI can be a visible entity in the game world, or an godlike entity that
controls entities in the game world. Such AIs is constructed out of parts such
as Pathfinding, Scripting, and a way to make decisions regarding problems
in the game world.

Most AIs in the game world needs to find a way between locations in
order to move around the level. This is a recurring problem present in many
types of games. Therefore optimised and general solutions exists such as the
A* algorithm.

When developing an AI for a game some times the AI should act au-
tonomously while at other times the behaviour should be strictly specified.
Such a specified behaviour is e.g. in a cutscene where the behaviour must be
specified to tell a story. The specified behaviour can be achieved by script-
ing, which combines several AI actions into a sequence which then can be
executed whenever needed.

The autonomous behaviour requires a method for the AI to make deci-
sion based upon some information from the game world. Several techniques
exist which enables the AI to make a decision. The problem of making a

21

good decision making system is, it has a large amount of parameters which
needs to be specified. Since the definition of these parameters is done by the
developers some values might still need further tweaking, which is an huge
task. Therefore techniques has been devised able to tweak upon these values
by learning from continuous evaluation of the AI.

4.2 AI Techniques

This section introduces different AI techniques that can be used in games for
developing a NPC. These techniques are: Decision trees, behaviour trees,
neural networks, fuzzy logic and bayesian networks. These techniques is
described briefly, and the advantages and disadvantages is listed in order to
provide an overview. The last part of the section chooses an AI technique
that is to be used as the basis of NoEsc. The chosen AI technique is then
compared to which possibilities the Source Engine provides.

4.2.1 Decision Trees

A decision tree[5] is made up of connected decision nodes, where the starting
decision is called the root, and the leaves are actions. The decision nodes
usually consists of easy boolean logic, that is: “Is treasure chest visible?”,
this question only has two answers: “Yes” and “No”. The reason for this is
boolean expressions can be created by the decision tree, e.g. AND of a and
b is determined by building the decision sequential, that is: If a is true, then
go to b and if b is true, then do action. Similary with OR, where the order
is swapped: If a is true, then do action, else do b and if b is true, then do
action. So a more complex boolean expression can be created by the decision
tree.

An example of a decision tree is illustrated in Figure 4.1 on the next page.
The decision nodes are influenced by the knowledge base that is used

to make the decision. If e.g. the treasure is visible, but locked, then the
decision tree will end in the action: “Use key” in Figure 4.1 on the facing
page. The reason decision trees often has a knowledge base consisting of the
global game state is they are simple and fast decision makers.

A decision tree is usually build as a binary decision tree, because of easier
binary testing and optimization. A non-binary decision tree would have the
advantage of being a flatter and a less broad structure, because more than
two choices from one decision node is possible, and thereby more efficient.

Operation and technique used for binary trees can be used on decision
trees, like balancing the tree. Timing can be used to prevent that the same

22

MOVE

MOVE

OPEN USE KEY

Is treasure chest visible?

Is treasure chest < 2m away?

Is treasure chest locked?

Figure 4.1: Decision tree about a treasure chest consisting of three decision
points and four actions.

action is picked all the time. This often occur when random decision making
is present. Therefore timing can be used to force a new action.

Advantages and Disadvantages

Decision trees have different advantage and disadvantage, which are listed
below. First the advantages:

• Easy and fast decision making.

• It is possible to apply learning to the technique.

The disadvantages are:

• Binary trees are often flat, but broad.

• Deduced rules can be complex.

4.2.2 Behaviour Trees

This section is based upon the webpage AiGameDev[6]. A behaviour tree
is a formal and graphical representation of a behaviour in tree form. The
behaviour affects individual or networks of entities, which make decisions or
exchange information by evaluating its tree.

A behaviour tree is a simple representation for decision making, which
makes the notation expressive, simple, uniform and easy to use. E.g. a
behaviour tree is able to use modularity such that there can be created
reusable states to provide logic for different goals in their own trees, that
is self-contained states.

23

Behaviour trees contains four building blocks:

Behaviour: The leaves of a behaviour tree, that composes the behaviour of
the NPC, e.g. if it should run or walk and where to.

Sequence: A sequence of behaviours. If a child behaviour succeeds the
sequence continues to the next child. If a child behaviour fails, then
the sequence backtracks.

Selector: The selector selects a behaviour to execute. The selector can
have different criterias for selecting the child behaviour, such as the
probability selector and the priority selector. The selector has different
termination criterias to deal with: If a child behaviour succeeds, the
selector can terminate successfully. In case a child behaviour fails, the
selector may backtrack and try the next child in order.

Decorator: A decorator adds functionality to a behaviour. It takes an ex-
isting behaviour and adds features. The decorator can be placed in
the tree as an extension to a subtree, which creates more complex
behaviour. Different kinds of decorators are present. Filters: Limit
number of times a behaviour can be run; Prevent a behaviour from
firing too often with a timer.

A behaviour is represented by a circle, sequence by a square, selector by
a round-cornered square and a decorator by a diamond. A small example
about a treasure chest is illustrated in Figure 4.2 on the next page, where
it first checks if it can see the treasure. If the treasure chest is not visible,
it looks around. If the treasure chest is visible it first moves towards the
treasure and then checks if the treasure is locked. If the treasure chest is not
locked it opens the chest, if it is locked it uses a key to open the treasure
chest.

Advantages and Disadvantages

Behaviour trees have different advantages and disadvantages, which are listed
below. First the advantages:

• A high level structure, which makes it easier for the designer to imple-
ment AI.

• Can use known AI techniques and algorithms like decision trees in the
selector.

24

Look around Get treasure

Goto treasure

Treasure visible

Use keyOpen

Locked

Figure 4.2: Behaviour tree about a treasure chest, where it either can look
around or go to treasure and try to open it.

• Used in new games, like Spore and Halo 3.

The disadvantage is that it is a way to structure an AI and not a complete
AI solution and therefore requires a decision system to function.

4.2.3 Fuzzy Logic

Fuzzy Logic [5] is a decision making technique that uses fuzzy sets. Fuzzy
sets have values that define the membership of a certain set, e.g. a player is
0.3 hurt and 0.7 healthy. This means that it is possible to have memberships
of multiple sets e.g. where the player is 0.2 hidden and 0.8 visible, but where
mutual exclusive sets values will summarize to 1.

To be able to turn the original data, like boolean, integers, and so on into
degrees of membership and back again, the following functions are used:

Fuzzyfication: Turns original data into degrees of membership.

Defuzzyfication: Turns membership values into data values, that may be
usable other places in the code e.g. for setting the remaining life of the
player.

There exist different kinds of defuzzyfication functions, which are blending
based on membership, defuzzyfication to a boolean value, defuzzyfication to
an enumerated value, centre of gravity and highest membership. The latter
of them takes the highest membership value and is then defuzzyfied into the
output value.

25

Following the fuzzy sets and functions, there also exist fuzzy rules, which
relate certain membership values to generate a new membership value for
other fuzzy sets. An example of this is if having a chest with four locks,
locked is 0.6, and it was poorly hidden, hidden is 0.2, then a rule for treasure
with the use of the operation AND :

mtreasure = min (mlocked,mhidden) ,

then mtreasure will have a value of 0.2. There are different operations, e.g.
like OR and NOT, which can be used to create combined facts and thereby
used as rules.

Advantages and Disadvantages

Fuzzy logic have different advantages and disadvantages, which are listed
below. The advantage is that it is easy to fine tune by editing membership
values.

The disadvantage is that it requires expert to apply the correct degrees of
membership.

4.2.4 Bayesian Networks

Bayesian networks [7, 8] is a model representing a set of variables and their
probabilistic independencies. This representation is a directed acyclic graph,
where nodes represent the variables and edges represent relationships. The
edges are directed and they point from the parent to the child. The Bayesian
networks use probability theory to check the relevance of one or more con-
ditions. These probabilities are known as Bayesian rules and consists of
different operations, like:

P (A|B) =
P (A ∩B)

P (B)
,

where A and B are events, P (B) > 0 and P (B) is known as the prob-
ability of B, where B ⊆ S and S is known as the sample space. P (A|B) is
the probability of A given event B. A small example given a fair die, what
is the probability of that the die turns up three given that the die turns up
a prime number:

26

P (A = {3} |B = {2, 3, 5}) =
P ({3} ∩ {2, 3, 5})

P ({2, 3, 5})
=

P ({3})
P ({2, 3, 5})

=
1
6
3
6

=
1

3

Given the probability calculus there are different rules that can be used
to create Bayesian rules, like the fundamental rule and Bayes’ rule, which
are two important rules when using Bayesian networks.

The following is an example of a Bayesian network of whether a lootable
chest is locked, trapped and/or containing treasure and is illustrated in Fig-
ure 4.3.

T

Tr

L

Figure 4.3: A Bayesian network illustrating treasure, where T is Trapped,
Tr is Treasure and L is Locked.

A Conditional Probability Table is connected to each of the nodes, this
table represents the probability of an event happening, e.g. the probability
tables in Figure 4.4.

True 0.5
False 0.5

True 0.5
False 0.5

Treasure True False
Trapped True False True False

True 0.8 0.5 0.0 0.4
False 0.2 0.5 1.0 0.6

(a) (b) (c)

Figure 4.4: (a) Trapped (T), (b) Treasure (Tr) and (c) P (L|T, Tr) (L).

There are two states for the variable trapped, the chest is either true for
trapped or false for not trapped. However if a node is a child node it has
to take into account the parents, e.g. if the chest is trapped and containing

27

treasure there is a 80.0% probability of it to be locked. This is found by
looking in Figure 4.4 on the preceding page under true for treasure and true
for trapped, reaching the value of 0.8 in true and 0.2 in false. However if
the likelihood of the chest being trapped is 0.7 and that the likelihood of
treasure is 0.4, then the probability of the chest is locked is 35.6%. This is
found by calculating the likelihoods of trapped and treasure, which both has
to sum to 1, so its just taking the value given, g, and solve the equation:
1 − g = n, where n is the not known value. Then for each cell in the table
the states are found that corresponds to the values just calculated, that is if
the cell is where trapped is true and treasure is true, then the following is
calculated: 0.8 · 0.7 · 0.4 and so on for all cells as illustrated in Figure 4.5.
Lastly each row are summed, such that the row with the name “True” is:
0.224 + 0.060 + 0.000 + 0.073 = 0.356 and also for “False”: 0.644. Thereby
given the probability of 35.6% for true and 64.4% for false.

Treasure True False
Trapped True False True False

True 0.8 · 0.7 · 0.4 0.5 · 0.4 · 0.3 0.0 · 0.6 · 0.7 0.4 · 0.3 · 0.6
0.224 0.060 0.000 0.072

False 0.2 · 0.7 · 0.4 0.5 · 0.4 · 0.3 1.0 · 0.6 · 0.7 0.6 · 0.3 · 0.6
0.056 0.060 0.420 0.108

Figure 4.5: Table (c) from Figure 4.4 on the previous page, where the likeli-
hoods have been inserted and calculated.

These tables has to be created beforehand for each of the nodes, this can
be done by experts or using data mining.

Another approach is to use initial values, which are then updated by the
NPC that has gathered new information, e.g. when the chest is opened and
the outcome can be seen.

Advantages and Disadvantages

Bayesian networks have different advantages and disadvantages, which are
listed below. First the advantages:

• Good at decision making.

• Probability of how likely a case is.

• Can learn if the probabilities are updated.

28

The disadvantages are:

• Computational expensive, so large networks are not recommended for
realtime use.

• Probability tables has to be created beforehand.

4.2.5 Neural Networks

A neural network started out as an imitation of how the brain works. Fur-
ther development has made this connection grow smaller, but neural networks
are today used in many places such as Google Image Search [9]. The over-
all source for this text is a lecture made by Prof. P. Dasgupta from IIT
Kharagpur [10]. The definition of a neural network is,

“Neural networks are complex non-linear functions that relate one
or more input variables to an out variable.”

A neural network consists internally of non-linear processing elements,
not unlike neurons in the brain, which are connected by a set of weights.

Wi,j

aj
a i = g (in)i

In
pu

t F
un

ct
io

n

Ac
tiv

at
io

n
Fu

nc
tio

n

ai

Figure 4.6: Illustration of the internals of a neuron in a neural network.

The neuron is a node in a neural network, and is illustrated in Figure 4.6.
The arcs on the left side shows the input aj into the neuron, this could come
from either an input unit or from another neuron in a multi layered network.
The input is then coupled with a weight Wi,j, which represents the weight
from input unit i to node i. The neuron has several input links and the input
function computes the total of the input:

ini =
∑

Wj,i · aj
The goal of the activation function is to transform the input computed

by the input function into an output. The activation function g(ini) is a

29

function of the total input, and it returns the result ai of the neuron, which
is sent to the neuron connected to it. This could e.g. be a threshold function
that returns 1 if input is greater than 0.7, and 0 if less than 0.7.

A neural network can consist of several layers of nodes, and the layers add
more functionality to the network. A perceptron network is a single layered
neural network. The perceptron network consists of perceptrons which can
provide a boolean output. Therefore a perceptron network can e.g. be used
when to attack an enemy based upon stimulations (input) to the perceptrons.
This network is very limited in its functionality and can only be used to do
simple functions. The problem with a multi layered network is that it is very
expensive computationally.

Input Units

Network Nodes

Weights

Figure 4.7: Illustration of a single layered neural network.

A single layered network consists of a set of input units and a layer of
network nodes as illustrated in Figure 4.7. Each of these are connected by
weights.

The functionality of a neural network is determined by a set of values on
the weights between the nodes. So in order to train a neural network to per-
form a certain task, the network is provided with learning data. The learning
data contains a set of input data and a set of the corresponding output data.
The error correction of an output from a unit can be corrected by calculating
Err = T −O, where O is current output and T is the correct output. Then
a weight adjustment rule is used to adjust the weights such that the output
node provides the corresponding output with the error differention.

Advantages and Disadvantages

Neural networks have different advantages and disadvantages, which are
listed below. First the advantages:

• A Perceptron network is not as expensive as a multi layered network,
and can be used in realtime applications.

30

• Neural network is known to be used in games for instance Black &
White[11].

The disadvantages are:

• Computationally expensive; optimization and learning process.

• Large knowledge base for initial learning.

4.2.6 Choice

For this game the choice fell upon using a technique which could give a
satisfying result in the behaviour of the NPC. Therefore the choice fell upon
behaviour trees, since this technique gives an expressive, simple and easy to
use technique for developing an AI for the NPC.

Behaviour trees provides the possibility of using other existing AI tech-
niques in coherence with the selector. Therefore experiments will be carried
out with Bayesian networks to compare this with a prioritisation selector,
that is a regular if-else selector. This is done to see how bayesian networks
can influence the selector in the way bayesian networks use probability theory
to calculate a good choice of action.

It was chosen not to use the existing AI system from the Source Engine
described in Section 3.2 on page 16 since it is not designed a game like NoEsc.
The default schedules which Source Engine provides also conflicts with the
wishes in NoEsc and can therefore not be used.

4.3 Summary

This chapter first covered an overview of how AI is used in games, whereas
the AI techniques section covered some of the AI techniques that could be
used to develop a NPC for a computer game. However the AI technique that
was chosen for the game was a behaviour tree structure with a prioritisation
sound selector, like choosing the highest volume of a given sound and follow
it, but also a bayesian network will be created for experimentation with the
plain method. These two methods will be compared to see which of the two
gives the best player experience, but also to see what difference it does for
the NPC. It was chosen not to use the existing AI from Source Engine.

31

Chapter 5

Design

This chapter covers the design of the behaviour tree used for the AI. How the
constraints from the Source Engine affects the behaviour tree design and how
the behaviour tree design is altered to fit these constraints. Afterwards a brief
introduction to the functionality in Behaviour Tree Tool (BTTool), which is
a tool for creating behaviour trees for NoEsc. Then the AI architecture is
described, how the AI should search an area, how they should form squads
together and how sound affects the AI. Lastly the level is described and then
the types of nodes that are used in the level for the NPC.

5.1 Behaviour Tree

The behaviour tree design is covered in this section and starts with the
constraints it had to accommodate. Afterwards a discussion of the the general
design and the different nodes in the tree.

5.1.1 Constraints

The constraints the design of the behaviour tree has to accommodate are
given from the choice of the Source Engine. In NoEsc the underlying ar-
chitecture of the Source Engine dictates that the AI code is called with a
given interval, e.g., with 10Hz as mentioned in Section 3.3.5 on page 18. In a
behaviour tree there are the leaf nodes which are actions, these actions can
take a long time to complete. A call to such an action must not be blocking,
because this blocks the game as of the before mentioned constraint. There-
fore the behaviour tree has to return within a short time, and will be called
the next time the AI has CPU time. This means the state the behaviour tree
is in has to be saved to continue executing the action.

32

5.1.2 Choices

Given the constraints there have been chosen a design for the behaviour
tree that is different from the original design. Firstly it has been chosen to
customize the nodes in the behaviour tree by writing code to specify what
the different nodes should do, e.g. what actions a behaviour does and how
the selector selects which subtree to execute. Because of this choice the
decorator is not needed, since this can be done in code for the given node.
An interrupt node has been added. This is because there is a need to be able
to override a running behaviour, e.g. if the player is seen when an NPC is
searching. The NPC should then stop searching and chase the player. The
interrupt node is chosen to be symbolised by a diamond. These alternations
accommodate with the constraints so it can be executed in the context of
the Source Engine.

5.1.3 Node Types

There are different types of nodes in a behaviour tree, which were discussed
in Section 4.2.2 on page 23. The modifications made to the nodes are:

Interrupt: A special node because each time the behaviour tree is updated
this checks if the interrupt condition is set, if it is, it runs the interrupt
subtree.

Status: The different nodes return status messages to inform if a node has
completed successfully or not, or if it is still being executed.

In Figure 5.1 on the next page the sequence and the behaviour nodes
are illustrated. This works by a test is executed to see if a child is already
running, if this is the case the running child is called. Otherwise the running
child is set to the first behaviour connected to the sequence, which then is
called. Each time the behaviour is called a test is performed to determine
if it is done, and if this is the case, it calls back to the parent node, with
its ending status. The sequence can now determine if it should run the next
child. If this is the case the child executed is stored as the running child and
the selector will now call it each time the selector itself is called, and wait for
it to callback. When all children are executed or one has failed, the selector
make a callback to its parent with the status.

Figure 5.2 on page 35 the interrupt and the selector nodes are illustrated.
The interrupt node is called each time the tree is called, when it is called
it tests to see if its interrupt is set. When the interrupt is set, then it is
currently running an interrupt, and it does not test for interrupts during this

33

Call

if child is running
 -
else
 set running child
 -

Callback

if no more children left
 return success

if child succeeded
 set next running child
 -
else
 return fail

if walking done
 return success
if walking failed
 return fail

Next
behaviour

Fail or
success

Fail or
success

Figure 5.1: An example of how the constraints of the Source Engine could be
overcome with respect to the sequence and behaviour in the behaviour tree.

time. The interrupt child is executed each time the interrupt node itself is
called, until the child make a callback telling it is done. When this callback
has occurred the node resumes to check for the interrupt and call the non-
interrupt child if there is no interrupt. When the selector is called it executes
an algorithm to determine which child should be executed, when this choice
has been made, the chosen child is stored, and is called each time the selector
itself is called, until the child make a callback telling it is done. When the
callback occurs the select algorithm is executed again to determine if a new
child should run or the selector should make a callback to its parent.

5.2 BTTool

To ease in the creation and alteration of the behaviour trees a tool has been
created, called BTTool. The tool was created in C# and has the following
functionality:

34

Call

if child is running
 -
else
 run select algorithm
 run selected child if any
 -

Callback

run select algorithm
run selected child if any
 -

else
 return status
 -

Behaviour Behaviour

Behaviour

if interrupt is running
 -
else if seen player
 -
else
 -

Fail or
success

Fail or
success

Figure 5.2: An example of how the constraints of the Source Engine could
be overcome with respect to the interrupt and selector in the behaviour tree.

• Modelling GUI for creating a behaviour tree.

• Different types of components to be used in the behaviour tree: Selec-
tor, sequencer, behaviours, interrupts and edges.

• Property overview of each component, where functions, root and so on
can be defined.

• Lastly a code generator, which traverses the behaviour tree and creates
C++ code, which can be inserted directly in to the game.

BTTool incorporates roots and other behaviour trees by colour codes.
The khaki colour is used for the root and the deep pink colour is used for
other behaviour trees. This is done to give a separation from the nodes used
in BTTool.

BTTool provides an overview of the behaviour tree, because its created
visually as a model and not directly in code. Figure 5.3 on the next page
illustrates the tool with a small behaviour tree, which makes the NPC patrol
an area.

35

Figure 5.3: Illustrates BTTool with a small behaviour tree that makes the
NPC go to a room and then searches the room.

5.3 AI Architecture

In this section the design of the AI architecture for Aslan is discussed. The
first discussion concerns the transformation from the specification of the AI
for Aslan into a usable behaviour tree. Afterwards the details of how the
behaviour tree and squad behaviour is achieved are explained. Lastly it
is explained how the communication between the Aslans making how each
Aslan are taking decisions.

The design of the AI architecture is created from the specifications in
Section 2.4 on page 12. In addition to this the design are created using the
tool presented in Section 5.2 on page 34.

The first task is to determine an order in which the actions has to be
performed, because the actions conflict in the sense they all specify a location
Aslan should be in, and in NoEsc Aslan can be in only one location at the
time. From the AI specification the following order is derived, where the
lowest number has the highest priority:

1. If player is seen: Follow and attack.

2. Examine distraction sound.

3. Search for player.

To achieve the behaviour described, a behaviour tree has been created as
illustrated in Figure 5.4 on the facing page. In the figure it can be seen that

36

Figure 5.4: Behaviour tree with the base behaviour of Aslan in NoEsc.

the first node is an interrupt node, which enables Aslan to follow the player
if the player is seen. The follow player behaviour is running to the location
where player last was seen and does this as long as it has seen the player.

If the player is not seen it moves on to the next behaviour, which is
to examine sounds if any. In the same manner as with the seen player, an
interrupt node is testing if a sound is heard, if this is the case a selector node is
executed. The selector determines which sound type should be investigated,
this is explained further later in this section. If the selector selects a bottle or
a prop in order to investigate a sequence is executed. The sequence first moves
Aslan to the location of the sound, when this action is done the next part of
the sequence is to wait a while to examine the sound. When the examination
is done the sequence has no more children to run and will return. The running
sound of footsteps and alarms are treated in a similar way, however without
the waiting when the position is reached. There are shown two different ways
of designing the same action, one where a sequence with only one child is
added, this is done so waiting easily can be added as a second node if desired
in a later development iteration.

If there was no sound heard, or no action taken on the sound, Aslan
instead patrols for the player. The search for the player are done in squads
and shown in Figure 5.5 on the next page.

5.3.1 Squad

Dividing the squads are done when the level loads, and the squads are created
by a maximum amount of members. This is because there can not exist a

37

one man squad, so if there had to spawn 16 squad members with a maximum
of five members per squad, the system must create four squads: two with
five members, and two with three members. When this is organised and the
system has chosen a squad leader for each squad it must divide the squads
evenly among the different spawn points.

When the formation of squads is done and Aslans does not hear or see
anything out of the ordinary, they will activate the search behaviour. On
Figure 5.5 the search behaviour tree is illustrated.

The root node in the behaviour tree is a sequence, which handles the
actions Aslan does. Aslan cannot take any new actions, after performed its
task, before the rest of the squad is done as well. The action Aslan can take
is based on whether or not it is the leader. If Aslan is not the leader it will
wait to receive further orders, and when orders are received it will execute
them and return to a defined meeting location. However if Aslan is the leader
it will execute a selector, which decides where the squad should go, and if
the room should be searched. This selector will be discussed in detail in the
last part of this section.

Figure 5.5: Behaviour tree with the squad patrol behaviour of Aslan in
NoEsc.

Aslans searches an area by looking at the ai nodes in the area. The nodes
are found by looking at the door nodes and removing the ai nodes around
the doors. This separates the nodes going to and from the area. Then the
remaining ai nodes are limited to a handful as depicted in Figure 5.6 on the
next page.

38

r

Figure 5.6: Illustration of the removal of ai nodes, where crosses are removed
nodes and square are nodes left behind.

To limit the amount of ai nodes within the room, a node close to the
center of the room is selected. All nodes within a radius r of the selected
node are ignored, then a node outside the radius r is chosen. Then nodes
within the radius r of the new selected node are ignored. This process is
repeated until all nodes is either ignored or chosen. The selected nodes are
visited in a greedy manner, by selecting the nearest unvisited node. This
is done until all nodes are visited. When all squad members that are not
standing guard outside the room have done this, the squad moves to the
next area.

5.3.2 Communication

All communication is under the restriction that it only works within a given
range. This range simulates the range Aslans can talk. The communica-
tion between Aslans is furthermore divided up into two levels, explicit and
implicit. The explicit communication is when a decision is made and this
is communicated to other Aslans. This kind of communication is initiated
from the actions in the behaviour trees. The implicit communication is the
sharing of information when Aslans meet, this information is where the other
Aslans has been and when they have been there.

5.3.3 Decision

This section covers the decision making for moving around in an office build-
ing and for when a Aslan hears a sound. The first covered is the custom

39

nodes, how they work and how they are designed in contrast with Hammer
Editor and Source SDK. Next is the decision making when hearing a sound,
how the custom nodes weights are updated and how Aslans makes a decision
given a variety of sounds.

Custom Node

In the game custom node has been created to identify rooms, doors and
hallways. This has been done to help Aslans know which areas to search and
what not to. The custom node consists of the following properties:

Type: Identifies the custom node as being a room or a hallway node. If it is
a room node, then the area is searchable by Aslans, but if it is a hallway
node, then Aslans only walk through the area without searching.

Weight: A weight that defines the need for Aslan to search the given area.
The weight value can be updated by means of time and sound.

First door node: A pointer to the first door node in the area.

Every area has a custom node, but also door nodes. The door nodes
consists of four properties:

Room node 1: Points to the custom node in area 1.

Room node 2: Points to the custom node in area 2.

Next door 1: Points to the next door node in area 1, if there are more
doors to point at.

Next door 2: Points to the next door node in area 2, if there are more
doors to point at.

The door nodes’ next door pointers are set up as a chain of doors, as
illustrated in Figure 5.7 on the facing page, where R4 points to the first door
node in the area, which is D8, so the area of R4 consists of the following chain
of doors: D8 → D7 → D3 → D6. This is done because of the limitation of
the Source Engine and the Hammer Editor, where the Hammer Editor can
not use lists. Therefore this was a limitation that prevented the use of lists
of door nodes for the custom node, but was solved by creating a chained list
of doors.

Aslans use the custom nodes to search an area. This is done by using the
weights of the custom nodes. Since a custom node can get all its door nodes
and thereby get all neighbouring custom nodes, then it can find the custom
node with the highest weight, which Aslan can go to.

40

R1 R2

D1

D2

D5

D4

D6

D3

R3

D7
R4

D8

Figure 5.7: Illustration of four custom nodes: R1 - R4, and six door nodes
D1 - D8.

Sound and Custom Nodes

The sound sense is used by Aslans to hear noises like bottles, footsteps and
alarms. Sounds has an affect on the custom nodes weights, which are in-
creased given distance between Aslan and the sound source, but also the
distance from the sound source to the custom node location. This is illus-
trated in Figure 5.8, where d is the distance between Aslan and the sound
source and s is the distance from the sound source to a custom node.

R4 R5 R6

R1 R2 R3

NPC

Sound

d
s

Figure 5.8: Illustration of Aslan hearing a sound at a distance of d.

The weight that needs to be added to the current weight of a custom
node uses the following formula:

w = w + m,

41

where w is the weight of a custom node and m is:

m =
sv
c
· d− s

d
,

where sv is the volume of the sound source, c is a constant and m > 0. The
higher the value of c the smaller the value of m will be, which yields a smaller
affect of the sound on the weights. The range of Aslans hearing and thereby
the range of this method is controlled by Aslans hearing sensitivity.

Sound and Decision Making

Aslans has to make a decision when hearing a sound, whether to investigate
the sound or ignore it. This decision making process can be done in a variety
of ways. The first method is by prioritising the different sound types, which
are: Alarm, bottle and footsteps. The prioritisation could be as the latter
by making the alarms more important, than bottles and lastly footsteps.
Thereby creating the following decision making process:

1. If Aslan hears an alarm sound then investigate the alarm with the
highest volume.

2. If Aslan hears a bottle sound then investigate the bottle with the high-
est volume.

3. If Aslan hears a footstep sound then investigate the footstep sound that
has the highest volume.

4. If neither of the three previous steps were chosen, then proceed with
the search task.

The second method could be to calculate the probability of investigating
a sound given a bayesian network as illustrated in Figure 5.9 on the facing
page.

The four nodes are given probability tables, where alarm is P (A), bottle
is P (B), footstep is P (F) and lastly search is P (S|A,B, F). By using this
network the following states in the three sound nodes: Alarm, bottle and
footsteps are:

• High

• Low

• Nothing

42

Alarm

Footsteps

Bottle

Search

Figure 5.9: Bayesian Network illustrating the need to investigate a sound
given alarm, footsteps and bottle sounds.

Where each indicates the sound intensity in three states. The search node
has the following states:

• Normal

• Alarm

• Bottle

• Footstep

So instead of using the prioritised list from the former method, it is now
possible to use the volume and the maximum volume to calculate a percent-
age of the three different sounds, which can be used to determine the highest
probability of a sound that is interesting for Aslan. So if an Aslan hears
an alarm with a value of 0.2 (low sound), bottle with a value of 0.7 (loud
sound) and footsteps with a value of 0.0 (no sound). Then the values for
high and low sound are calculated, but still need to be summed to 1, if there
is no sound then the value of high and low sound sums to 0 and no sound
will have a value of 1. The following probabilities could be calculated for the
three sound types and for continue as normal:

Normal: 10.4%

Alarm: 63.6%

Bottle: 26.0%

Footsteps: 0.0%

Which were calculated by using a probability table for the search node.
Choosing the task with the highest value assigns the NPC to investigate the
alarm.

43

5.4 Level

As described in Section 2.1 on page 8 the player is located inside an office
building, and Aslans are storming the building from three fronts. The level
design is therefore constructed as seen in Figure 5.10.

 Vault

Lobby

Cubicles

Cafeteria

Auditorium
Offices

Offices

Lobby to the
 auditorium

Objective
Aslan Spawn
Player Start

EXIT

Figure 5.10: The level design for NoEsc.

The player starts in the big room in the center. This room contains
multiple cubicles, which will give the player a feeling of being inside a maze.
The cubicles should help the player hide from the Aslans, but also try to
confuse the player. The room is fairly dark where only the light from the
monitors are present. In one of the rooms an objective can be found.

The room with cubicles contains entrances to each of the rooms in the
level. The first entrance as seen in Figure 5.10 leads to the auditorium, which
is a big room where the player has a minimal chance of hiding while taking
the objective. The auditorium is also one of the rooms in which the agents
starts. All of the different rooms in the level has two or more exits, except the

44

vault. This is because the player should always have minimum two directions
to take, if agents are approaching from one of them. The vault has only one
exit, because it should be a hard objective to take.

The second room is the lobby, where an objective is placed. The room is
bright and contains limited amount of hiding spots. The agents also spawns
in the lobby, and the lobby contains the exit when all objectives have been
taken.

The third room contains small offices, where one of them contains an
objective, and a second objective at the end of the hallway. The rooms in
the hallway are dark and small, but are also good hiding spots for the player.

The fourth room is the cafeteria, which is similar to the lobby, with a
limited amount of hidings spots. The room is also a starting point for Aslans
and an objective is present.

The last room is the vault. The entrance to the vault is a long dark
hallway in which a trap is placed. The trap triggers if a player or Aslan
walks into it. When the trap triggers an alarm sound occurs and fences
entraps the player or Aslan.

As described earlier each room contains an objective and the difficulty in
taking them varies from room to room. The different rooms are connected
with small hallways, where the player has limited options to escape.

5.4.1 Nodes

In the level two types of nodes are placed. The first node type is a standard
entity in the Source engine, which is called ai node. This type of node is a
representation of walkable areas in the level. These nodes a placed manually
in the level to let the Aslan know where to walk.

The other type of nodes, is the custom node entity used for decision
making as described in Section 5.3.3 on page 40. As described there exist
three types of these nodes, room, hallway and door nodes. The nodes are
placed on a print of the level as seen on Figure 5.11 on the next page, and
later typed into the Hammer Editor, which has been a design aid.

The map is split up into two types of spaces, Hallways and Rooms, and
every one of these spaces will contain a node with the information of what
type of space it is. This way the AI will know how to behave, e.g. when
dealing with a room the squad will leave one man at the door to keep guard
and set the rest to search the room. In a hallway there is no need to have a
guard so they will just run through.

45

Figure 5.11: The custom nodes placed on a print of the level.

5.5 Summary

The AI technique used by the NPC is behaviour trees, but a modified version
that does not consist of decorators, but interrupts instead. Decorators were
removed, because each node now could have custom code, which meant the
properties of decorators now could be coded instead. The constraints given
by the Source Engine, meant that the AI needed to store the behaviour it
is currently doing, since the AI in Source Engine only is allowed to work
in given time intervals. The behaviour trees for the game was created in
BTTool, which was a custom made piece of software, that can design the
behaviour tree visually and generate code for use in the game.

46

Next the AI architecture was designed, which covered how the squad,
communication and decision making should work. The squad creation is
done when the level has loaded, where a squad leader is assigned to each
squad. The communication is done explicitly and implicitly, where the first
is orders given to Aslans squad members by the leader, and the latter is when
Aslans meet and exchanges their searched areas, so they do not search the
same areas.

Then the decision making by Aslans was discussed, that is how they
search a building by the use of custom nodes. The custom nodes could either
be rooms or hallways and was chained with door nodes, so all doors in an
area could be accessed by the custom room node. The custom nodes also
had a weight, which was used by Aslans to know which direction to take,
that is the higher the weight the more likely Aslan will search that area. If
a Aslan hears a sound the weights of the custom nodes are affected by this,
so Aslans will search the area the sound is in.

Next was the decision making when hearing sounds. Two methods were
described. The first method was a prioritised list, where alarm was prioritised
higher than bottle and footsteps. The last method was the use of bayesian
networks to make the decision. Both of which will be evaluated to see if there
is any difference in Aslans actions.

Lastly the level was described and which types of nodes are present in
the level. The nodes present in the level were ai nodes and custom nodes.

47

Chapter 6

Implementation

This chapter presents the implementation of NoEsc. The primary focus of
this chapter is how Aslan is created codewise using the the Source Engine.
In addition to this the level and game logic for NoEsc is discussed.

The implementation of the AI design discussed in Chapter 5 on page 32
are not discussed in this chapter because the implementation of these parts
follow the design, and therefore are no relevant topics in the implementation
of these.

6.1 Programming in Source

When a Mod is created it must be decided what functionality to add in code
and what to make in Hammer Editor. An example of such functionality is
Aslan where the functionality is written in the source code, but it is inserted
through the Hammer Editor where desired.

Therefore an API is available to access the functionality in the Source
Engine. The API exposes features in the Source Engineand makes them
available to the creator of a Mod. This section will explain the primary
functionalities that was used while constructing NoEsc and also how they
were used.

6.1.1 Creation of Aslan

Aslan is created as a regular NPC as described in Section 3.3.4 on page 17.
Before a NPC in Source can move, shoot and so on, it has to have the proper
capabilities. These capabilities can be run, jump, crawl and so on. So to
make it possible for the NPC to e.g. run, then this capability has to be
applied to the NPC. However the 3D model chosen for the NPC should

48

also support these capabilities in its animations. An example is the Barney
model from Half-Life2 that does not support the using of the stun-stick. The
capabilities are added to a NPC as shown in Listing 6.1. This method has
to be called when the NPC is spawned to ensure the capabilities are set
properly.

1 CapabilitiesAdd (bits_CAP_MOVE_GROUND | bits_CAP_DUCK |
bits_CAP_MOVE_CRAWL | bits_CAP_MOVE_CLIMB . . .)

Listing 6.1: Shows how to add capabilities to Aslan.

Sensing

A NPC is able to receive inputs from the game world. This is done by
emulating the idea of seeing and hearing. This emulation is done in the
Source Engine and have API calls accessible to find which entities there have
been seen and heard.

The API call for seeing only needs to be provided with view angle and a
view-distance in order to return the list of entities which the NPC can see.
Listing 6.2 shows how this is implemented in Aslan.

On line 1 an action calls Look to refresh the list of what the NPC can see.
On line 7 a loop goes through all the entities seen, and on line 9 to 13 the
found entities are checked if they are a player and if they are stored in the
sightings list. A wrapper class NEEntity is used to create easy accessors

and attach additional data onto the entity.

1 GetSenses ()−>Look (noesc_aslan_viewdistance . GetInt ()) ;
2
3 AISightIter_t iter ;
4 CBaseEntity∗ foundEntity ;
5
6 foundEntity = GetSenses ()−>GetFirstSeenEntity (&iter ,

SEEN_ALL) ;
7 while (foundEntity)
8 {
9 i f (foundEntity−>Classify () == CLASS_PLAYER && !

playerIsInvisible)
10 {
11 NEEntity entity (foundEntity , Player) ;
12 _sightings . push_front (entity) ;
13 }
14 foundEntity = GetSenses ()−>GetNextSeenEntity (&iter) ;
15 }

Listing 6.2: Code sample that shows how Aslan is able to see.

49

An interesting observation in the code is how to differentiate between
the different types of seen entities in Source Engine. Each entity in Source
Engine has a Classify method which holds an type identifier, that can be
compared with the needed entity type identifier to get the entities needed.
The only sightings that Aslan is interested in is when it sees the player, this
way it may go into pursuit and try to capture the player.

To enable a NPC to hear, it must be specified what it is interested in
hearing. The list of interesting sound types is created by using the set of
standard sounds such as combat sounds, player made sounds, bullets and
so on. Listing 6.3 shows how this is implemented in Aslan. The list of
interesting sound types are defined in GetSoundInterests() which is used on
line 1. If there are any sounds, these are all examined as shown on line 3
to 11 and 20. On line 14 and 15 the sounds are stored like the sightings,
and on line 16 the nearby nodes, as explained in Section 5.3.3 on page 40,
are updated to accommodate the sound. This updating will make the area
where the sounds are heard more interesting for Aslan.

1 i f (GetSoundInterests ())
2 {
3 int iSound = CSoundEnt : : ActiveList () ;
4
5 while (iSound != SOUNDLIST_EMPTY)
6 {
7 CSound ∗pCurrentSound = CSoundEnt : : SoundPointerForIndex (

iSound) ;
8 Assert (pCurrentSound) ;
9

10 i f ((pCurrentSound−>SoundType ()) &&
11 GetSenses ()−>CanHearSound (pCurrentSound))
12 {
13
14 NEEntity ent (pCurrentSound) ;
15 _sounds . push_front (ent) ;
16
17 data . roomNodes . soundExplosion (this−>GetAbsOrigin () , ent

. getSoundVolume (this) , pCurrentSound−>GetSoundOrigin
()) ;

18 }
19
20 iSound = pCurrentSound−>NextSound () ;
21 }
22 }

Listing 6.3: Code sample there shows how Aslan is able to hear.

50

Attack

Aslan also needs to be able to attack the player, which it does with a stun-
stick. However Aslans goal is to get into a certain distance of the player
to attack and damage the player. To determine if the player is within the
attack vicinity, the player should be within a certain range of Aslan, without
any obstacles between Aslan and the player. To check for obstacles a ray is
created between Aslan and the player to check that it does not intersect with
any blocking objects. If there is possibility for Aslan to attack it will attack.

6.1.2 Difficulty Levels

In NoEsc there are different difficulties as described in Section 2.5 on page 13.
These difficulty levels are implemented by using the difficulty system already
implemented within Source Engine. The difficulty is implemented via a value
called skill, this value is an integer where 1 represent easy, 2 medium, and
3 hard difficulty. This is used throughout the code to alter the different
difficulty parameters, e.g. in Listing 6.4 the view distance, damage and field
of view of Aslan have, are defined for the easy skill level. This definition is
done when Aslan is spawned.

1 ConVar const ∗skill = cvar−>FindVar ("skill") ;
2
3 switch (skill−>GetInt ())
4 {
5 case 1 :
6 {
7 noesc_aslan_viewdistance . SetValue (600) ;
8 noesc_aslan_damage . SetValue (40) ;
9 noesc_aslan_fov . SetValue (0 . 5 f) ;

10 }
11 break ;
12 . . .

Listing 6.4: Code sample that shows how the difficulty level is set on Aslan.

Another example is when the Aslans are spawned and set into squads.
This is done in the Concommand noesc spawn, which is called every time
the level loads. In this method the difficulty level decides the amount of
Aslans, and how many that there is per squad. In 6.5 the squad size and
total number of Aslans are shown for the easy skill level.

1 switch (skill−>GetInt ())
2 {
3 case 1 :

51

4 {
5 nAslans = 10 ;
6 nMaxSquad = 2 ;
7 . . .

Listing 6.5: Code sample that shows how the difficulty level affects the
amount of Aslans spawned and also how many there will be per squad.

6.1.3 Custom Nodes

As explained in Section 5.3.1 on page 37 each squad will when encountering
a new room have a guard standing at the door and then let the rest of the
squad search the room. To make this possible there needs to be a way to
differentiate between rooms and hallways, and also a way to find the door
where the guard will be positioned. Therefore custom nodes needed to be
created as explained in Section 5.3.3 on page 40. In addition to the custom
nodes, there also needs nodes to represent where Aslan can spawn. The
implementation of these two kinds of nodes are similar so only one will be
explained here, namely the spawn point node.

First the class NESpawn is created. It inherits from a standard node from
the Source Engine. It is extended to contain an integer called location, that
represents where it is located. Since this information has to be specified in
the Hammer Editor it has to be added to the DATADESC as seen in Listing 6.6.
The DATADESC is a table of data that defines the values which the Hammer
Editor can edit. Line 1 tells the Source Engine which name the entity has at
runtime, in this case ne spawn. Then the DATADESC is defined and in it a field
called location is defined, which is an integer.

1 LINK_ENTITY_TO_CLASS (ne_spawn , NESpawn) ;
2
3 BEGIN_DATADESC (NESpawn)
4 DEFINE_KEYFIELD (location , FIELD_INTEGER , "location") ,
5 END_DATADESC ()

Listing 6.6: Code sample that shows the field location being added to the
DATADESC.

To enable the Hammer Editor to use this entity it has to be added to
the FGD file. The addition of the ne spawn can be seen in Listing 6.7 on the
facing page. It shows that a new PointClass called ne spawn is created and
it has a the field location which has three choices in the Hammer Editor:
Lobby, Cantine, and Aud. When an entity of type ne spawn is created in the
Hammer Editor it will show one field called Spawn Location with the three
possible choices.

52

1 @PointClass base (Parentname) = ne_spawn :
2 "An entity used to spawn Aslans."

3 [
4 location (choices) : "Spawn Location" : 0 : "The location" =
5 [
6 0 : "Lobby"

7 1 : "Cantine"

8 2 : "Aud"

9]
10]

Listing 6.7: A sample from the FGD file that shows the definition of NESpawn.

6.2 Level

The level for NoEsc was developed using the Hammer Editor, and following
the design criteria. All architecture was developed using the basic building
blocks of Hammer Editor like blocks, wedges and cylinders. Afterwards ma-
terials were assigned to the architecture and props were placed in the levels
to provide the right atmosphere.

Before the map could be compiled and run, different entities had to be
placed in the level. The first entity was info player start which handles
the spawning of the player. The Aslan has a custom created entity called
noesc spawn which has three different types depending on which room the
Aslan spawns.

A picture of the level created with the Hammer Editor can be seen in
Figure 6.1 on the next page.

6.2.1 Intro sequence

The intro screen is implemented using a point camera entity and several
path corner entities. The camera is placed at a starting point and facing the
player in the other room. Several path corner entities are placed as a track
for the camera to follow, where the Hammer Editor handles setting the next
and previous track for each of the entities. On the camera entity the speed
and first path target are specified. the Hammer Editor handles activation of
the camera at the beginning of the level, and disabling the camera is achieved
using a output function on the last path corner entity telling the camera to
disable.

53

Figure 6.1: The final level for NoEsc created with Valve Hammer Editor.

6.2.2 Objectives

The objectives and win condition are created using custom and standard enti-
ties in the Hammer Editor. The objectives in NoEsc is a custom entity called
noesc objective, which is a button that has to be pressed a specific amount
of time before it is fully pressed. If the player releases the button before it is
fully pressed, the player has to start over. On each of the noesc objective

entities placed in the map there is defined an output function that handles
the counting of objectives.

All output functions are occurring when the button is fully pressed. The
first output function handles the removal of the objective, so the player can
not see it on the overview map or in the level. This is achieved using the
Kill method, which removes the entity from the world. The next output
function calls another entity called math counter, which is a basic counter.
The output function adds one to the counter entity.

The entity logic case handles when to display specific text on the screen,

54

telling the player how many objectives are left and when to run for the exit.
The math counter entity described above tells the logic case entity when
a new number is added and sends the sum of numbers to the entity. The
logic case entity works in the same way as a switch-case statement. If the
number it gets as input is for instance two, it shows the entity game text

with the message: ”Two objectives left”. When the case is zero there are no
more objectives left, and it fires an output function that displays the text
on the screen, telling the player to run for the exit, and lastly it enables the
entity at the exit. The entity at the exit is a trigger once entity and when
the player touches it, several events occurs. First the player is teleported to
another location so there is no interference when showing the credits screen.
Then all sounds are disabled and credit sound are played. Lastly the screen
fades and credits are enabled.

6.3 Summary

In this chapter it was shown how the implementation of Aslan is done in the
Source Engine. It is also shown how Aslan uses its senses to aid it in finding
the player. Furthermore it was described how to cope with the difficulty in
the Source Engine. In addition to this the implementation of game logic and
intro sequence in the Hammer Editor were also explained. In addition with
the parts not explicit explained in this chapter an working implementation
of NoEsc is achieved.

55

Chapter 7

Testing

For a game to be a success it has to be playable. Therefore it is important
to have the game tested to see if it has a balanced difficulty level and the
gameplay is fun and challenging. It was therefore chosen to have NoEsc tested
by people external to the developers of NoEsc, except when testing the sound
selector, which is done by the developers. The testers should provide an idea
of how far NoEsc is to be a playable game and thereby also provide a list of
items that needs to be fixed or enhanced.

7.1 Sound Selector Test

The sound selector in NoEsc was experimented upon by creating two different
types of selectors as mentioned in Section 5.3.3 on page 42. The first method
was by prioritising the types of sounds, the second was by using bayesian
networks. These two methods were tested by the developers to see if bayesian
networks provided an enhanced game experience. The test consists of a test
where a developer first plays where the prioritisation method is used and
next where the bayesian network method is used. The following comments
were given by the developers when using the bayesian network method with
Aslan:

• Reacted more on the sound of footsteps.

• Better at finding and trapping the player.

• Stuck less times.

• The Aslans were better at spreading out.

56

The reason for Aslan being more reactive to the sound of footsteps is that
the probability calculation given a footstep sound an no other sound types
gives a higher probability of following the source of the sound, than doing as
normal. This is also the reason of the AI being better to find and trap the
player, since the player makes a lot of noise when trying to escape. This does
however not explain why the testers thought that the NPCs got stuck less
and were better at spreading out. Overall to get the NPCs to be less reactive
to the sound of footsteps is to edit the values in the probability table, such
that footstep has a lower initial value and normal has a higher value.

7.2 Play-testing

It was chosen to use play-testing as the method to test NoEsc. The test is
based upon the Pluralistic method described in the article “The Pluralistic
Usability Walk-Through Method”[12]. A major difference is that the testers
tested a working version of the game and not a series of mock-ups, and that
it was done late in the project period. Some natural limitations arose of
the fact that only two test managers administrated the tests. Two groups
were chosen to test the game: Group SW802B and SW803A, which were
8. semester software developers at Aalborg University, that already had
experience playing computer games. None of the groups had seen or played
the game before. The test was conducted on a full testing setup consisting
of a laptop running Windows XP and the latest version of Valve Steam and
NoEsc, and another laptop for notes. The testing was run in such a way that
one tester at a time would be seated in front of the computer, and was then
asked to play NoEsc.

One test manager sat together with the current tester and observed and
asked some questions while the tester played. At first the tester should start
the game, choose easy as the difficulty level, and then try to play the game.
This should all be performed without any help from the test manager in
order to see if the goal of the game was obvious enough. After some tries the
test manager would answer the testers questions and try to help the tester in
the right direction. When the tester had figured out how to play the game,
he should try to come up with possible enhancements for the game. All of
this while the second developer sat and took notes. After a while the tester
would be sent over to the second test manager who would ask some pre-made
questions, such as if the AI seemed intelligent enough or if the difficulty level
was to hard or to easy. This was done with both groups.

57

7.2.1 The Test

The test was performed with groups SW802B and SW803A as explained in
section 7.2 on the previous page. The questions and answers can be found
in Appendix A.1 on page 66 and Appendix B.1 on page 69.

This section will evaluate the feedback from the playtests.

Game understanding

The members of the test groups agreed that the game was to hard to figure
out. It was proposed to make a more fluent transition into the current level,
such as tutorial levels where the player could learn that the objectives should
be found and hacked. More so also to introduce the concepts of distraction,
stealth movement, and the cloak.

Difficulty

The game was to hard even at the easy setting, and completely impossible
for the testers at higher settings. This is a problem as the players eventually
could give up on the game. The testers suggested health regeneration and an
ability to run for a short while. Regeneration would, as one tester noticed,
also fit better with the HUD in NoEsc as it requires no health indicator.

The AI

The testers agreed that the AI searched intelligently through the building,
even though they at times seemed to get stuck at locations and moved along
a couple of seconds later. Though it was noticed that the NPCs at times
would focus to much on areas such as the central cubicle room or the vault
hallway. The players also noticed that running away from the AI headlessly
often would get them caught as the AI would capture through other ways.
The testers also liked the way they could run into a room and hide behind
the door, and then hear the NPCs run past. Also the distract feature was
applaused, even though it was noticed by the developers that they seldom
used it.

7.3 Summary

The test went well and it provided the group with a list of possible enhance-
ments for the game. The fact that the testers thought the game was to hard

58

is understandable, and some extra tools provided to the player could en-
hance both playtime, but also the difficulty level. This could be tools such as
a mirror to see around corners or the ability to run for a short period of time.

Generally the testers liked the AI, and found that it provided a high
amount of resistance. They also liked the way it searched through the build-
ing.

Overall the testers thought the game was playable, and fun. Also several
mentioned that the game introduced a new aspect into stealth game with a
high amount of paranoia while playing the game.

The sound selector test confirmed that the bayesian network method en-
hanced the game experience by creating more intelligent behaviour in Aslan.
However the bayesian network method made Aslan more aware of the present
of the player, since the footstep sound was triggered more often, than the
prioritisation method, which gave a more difficult Aslan to escape from.

59

Chapter 8

Epilogue

The epilogue is a collection of the reflection, conclusion, and future develop-
ment. The reflection will reflect on the Source SDK, BTTool, and NoEsc.
This is then followed by a conclusion of the project. The last section will
present some suggestions for further development that if applied to the game
could enhance gameplay or fix issues.

8.1 Reflection

The reflection is split into three main topics of discussion: Source SDK,
BTTool, and NoEsc. The first section discusses the work experience got by
working with the Source SDK. The next section discusses the development
of the BTTool , and if it was worth developing. The last section will provide
some thoughts about the game design and how to apply it to the game.

8.1.1 Source SDK

The group started the development by trying to implement everything in the
code. This slowed down the development process, but it was however quickly
discovered that the Hammer Editor was able to provide a lot of the needed
functionality through its scripting interface. After this a developer was ded-
icated to try to make game functionality in the Hammer Editor, instead
of implementing it in code. This decreased the time it took to implement
features.

8.1.2 BTTool

At the beginning of the project it was decided to make a tool that could
generate the code for the behaviour tree, based upon a modelling tool. A

60

major concern was if the time spent on the development of the tool was worth
the time. Through the project the behaviour tree was changed several times
to fit with new requirements or general changes to the tree. Without the
tool this could have been very time consuming, but the tool made it visually
easier to modify the existing trees. The tool was also able to provide an
overview of the behaviour tree, which helped to explain and understand the
behaviour of the AI.

8.1.3 NoEsc

After the game had been developed it had to be adjusted to be playable.
While constructing the game all values relating to the game play, such as
running speed, had been made into convars such that they could be changed
during runtime. So the values had to be adjusted at the end, based upon
gameplay requirements. It was found to be challenging to find the appropri-
ate values, which later was supported by the testers that found the game to
hard.

The AI turned out to be a challenge to develop as the behaviour was quite
different from reguar AIs seen in e.g. Half-Life2. The greatest problem was
that the AI was unable to interchange information and that a synchronisation
scheme had to be applied to the Aslans. Besides this a lot of basic features
of an AI had to be implemented in order to work. Some final work on the
game included experiments with a bayesian rule based sound selector, which
showed to improve the behaviour of the AI.

8.2 Conclusion

The goal of the project was to design and implement a single player game
with an AI by using the Source Engine. The game idea developed was a
stealth game called NoEsc, where the player was an agent trying to hack a
number of objects, while avoiding the Aslans. Therefore some game rules
was defined, both for the game content, but also for the AI of the NPCs.

Different AI techniques were researched and compared to find one that
would fit the needs of NoEsc. The techniques chosen to be implemented were
behaviour trees and Bayesian Networks. The latter was experimented upon
in the sound selector of the behaviour tree structure against a prioritised list
of sound types, which proved to enhance the behaviour of the AI. This made
the game a bit harder, than the original prioritised list of sounds, since the
footstep sound was triggered more often, than the original method. This
made the Aslans more aware of the player position.

61

The behaviour tree technique was redesigned to remove decorators and
replacing them with interrupts, since the Source Engine calls the AI in defined
time intervals and since every node has custom code.

Different difficulty levels were created to fit the player skill level. This
was done by editing the number of Aslans, and their ability to hear and see.

Custom nodes were designed for the level and were used by the AI for
decision making and path finding. Two different kinds of nodes were created,
one for doors and one for rooms, which then were linked together by a linked
list, because of limitations in the Hammer Editor. The nodes contain different
kinds of information such as the weight, a list of door nodes, and so on.

A play-testing test was performed with two test groups, which had not
played the game before. The tests showed that even though there were
different difficulty levels, the game was still to hard to complete. Furthermore
it was hard for the testers to figure out what they had to do at the start,
because there was no introduction to the game mechanics. Besides that,
the test groups thought that the game AI seemed intelligent when searching
through the level, and the sound of the Aslans running past the room they
were hiding in, supported the game idea.

8.3 Further Development

In this section possible additions to NoEsc are discussed. First additional
content to the game is described and lastly the additional behaviour.

8.3.1 Content

Only one level was developed for the game, but the testers wished for more
levels. Where some should introduce the game elements.

Multiple power-ups could be added to the game such as a temporary
sprint boost that could be used to escape from the NPCs more easily.

Several testers also pointed out that the minimap could turn with the
player, or else contain an arrow showing in which direction the player was
looking in order to improve navigation.

As it is the player has no way to defend herself against the Aslans, so a
tool such as a speaker that could be dropped and then remotely activated
could be an alternative way to escape.

A major problem is that the player mostly is running blindly around
corners which could be fixed by a mirror that the player could use to see
around obstacles. This could both be used to see around corners, but also
to take a glimpse above a cubicle.

62

8.3.2 Additional Behaviour

The testers suggested the ability to open and close doors, which could create
a more interesting AI and game play as the AI could react on doors that are
open that should not be open and reversed.

Additionally it could be harder to see the player in dark spots, so the
player could hide in the shadows and see the Aslans run past him.

At this point the squads are fixed and it is not possible to merge or split
the existing squads. Additional behaviour could be that the squads would
be able to perform the merge and split tasks, and depending on the choices
for searching rooms, hallways and so on. This way a squad could be able to
split into two to cover two different hallways, and merge together when they
meet again.

63

Bibliography

[1] Wikipedia, Tom Clancy’s Splinter Cell — Wikipedia, The Free Encyclo-
pedia, http://en.wikipedia.org/w/index.php?title=Tom_Clancy%

27s_Splinter_Cell&oldid=282158843, 2009, [Online; accessed 19-
April-2009].

[2] Wikipedia, Thief: The Dark Project — Wikipedia, The Free En-
cyclopedia, http://en.wikipedia.org/w/index.php?title=Thief:

_The_Dark_Project&oldid=281232499, 2009, [Online; accessed 19-
April-2009].

[3] Wikipedia, Half-life 2 — Wikipedia, The Free Encyclope-
dia, http://en.wikipedia.org/w/index.php?title=Half-Life_

2&oldid=284310153, 2009, [Online; accessed 18-April-2009].

[4] T. V. D. Community, The Valve Developer Community, http:

//developer.valvesoftware.com/wiki/Main_Page.

[5] I. Millington, Artificial Intelligence for Games, First ed. (Morgan Kauf-
mann, 2006).

[6] A. Champandard, Aigamedev.com, http://aigamedev.com/premium/
presentations/behavior-trees, 2009, [Online; accessed 19-April-
2009].

[7] G. S. David M. Bourg, AI for Game Developers, First ed. (O’Reilly,
2004).

[8] T. D. N. Finn V. Jensen, Bayesian Networks and Decision Graphs,
Second ed. (Springer, 2007).

[9] Google, The Next Generation of Neural Networks, http://www.

youtube.com/watch?v=AyzOUbkUf3M.

[10] P. P. Dasgupta, Learning Neural Networks, http://www.youtube.com/
watch?v=6ixqKw7uK6o.

64

http://en.wikipedia.org/w/index.php?title=Tom_Clancy%27s_Splinter_Cell&oldid=282158843
http://en.wikipedia.org/w/index.php?title=Tom_Clancy%27s_Splinter_Cell&oldid=282158843
http://en.wikipedia.org/w/index.php?title=Thief:_The_Dark_Project&oldid=281232499
http://en.wikipedia.org/w/index.php?title=Thief:_The_Dark_Project&oldid=281232499
http://en.wikipedia.org/w/index.php?title=Half-Life_2&oldid=284310153
http://en.wikipedia.org/w/index.php?title=Half-Life_2&oldid=284310153
http://developer.valvesoftware.com/wiki/Main_Page
http://developer.valvesoftware.com/wiki/Main_Page
http://aigamedev.com/premium/presentations/behavior-trees
http://aigamedev.com/premium/presentations/behavior-trees
http://www.youtube.com/watch?v=AyzOUbkUf3M
http://www.youtube.com/watch?v=AyzOUbkUf3M
http://www.youtube.com/watch?v=6ixqKw7uK6o
http://www.youtube.com/watch?v=6ixqKw7uK6o

[11] J. A. Farr, Neural Networks in Computer and Cognative Sci-
ence, http://www.cubiclemuses.com/cm/blog/archives/000015.

html/, 2003, [Online; accessed 19-April-2009].

[12] S. Riihiaho, The Pluralistic Usability Walk-Through Method, http:

//moodle.vrml.aau.dk/file.php/20/Artikel_-_Pluralistic.pdf,
2009.

65

http://www.cubiclemuses.com/cm/blog/archives/000015.html/
http://www.cubiclemuses.com/cm/blog/archives/000015.html/
http://moodle.vrml.aau.dk/file.php/20/Artikel_-_Pluralistic.pdf
http://moodle.vrml.aau.dk/file.php/20/Artikel_-_Pluralistic.pdf

Appendix A

Playtesting: SW802B

A.1 Group SW802B

The following are the comments and suggestions for further development
received from group SW802B during the playtest.

The questions were asked to the different members in the group, and the
answers can therefore be contradictory.

Was the difficulty suitable?

• The game is to hard on easy difficulty setting.

• The game seems a bit slow moving and therefore more difficult.

• More hiding spots would make the game easier.

• The difficulty is spot on.

Does the Aslans seem intelligent and varied?

• It works very well.

• The Aslans work great.

• It works but the Aslans spends to much time in the central cubicle
room.

• Yes as the Aslans searches through the building and reacts on sounds.

• Yes they tricked and caught me.

66

Could you initially figure out the objective for the game?

• No idea what to do.

• After a brief introduction the game was easy to play.

What worked well?

• The level design was awesome.

• The sound effects from the Aslans, such as the footsteps.

• The intro video worked very well and gave the game a movielike effect.

• Has not seen a game like this before, and it worked.

• It was nice to see where agents was looking.

• Able to hide behind tables.

• Cool with the ability to distract the Aslans.

• The concept worked well and gave a pounding pulse.

• Able to throw chairs.

• The game works even though there is no killing involved.

• The fish tank was cool.

What did not work well?

• Maybe monotonous in the long run.

• It should be easier to escape the Aslans.

• Too difficult.

• The Aslans could see me if I raised just a bit in the cubicles.

• Higher resolution on the minimap.

67

Extensions to gameplay

• Cloak timer.

• Player indicator bigger on the minimap.

• The minimap should turn with the player.

• Speed boost ability.

68

Appendix B

Playtesting: SW803A

B.1 Group SW803A

The following are the comments and suggestions for further development
received from group SW803A during the playtest. The questions were asked
to the different members in the group, and the answers can therefore be
contradictory.

Was the difficulty suitable?

• The game is to hard even on the lowest difficulty.

• A smaller and simpler level to start with.

• A brief introduction or tutorial to the game would ease the learning
curve.

Does the Aslans seem intelligent and varied?

• They seem very intelligent, at times to intelligent.

• They look intelligent in the way they are searching the building.

• Yes they seem very intelligent.

• They appear intelligent as individuals and as part of a squad.

Could you initially figure out the objective for the game?

• It took some time, but it is possible to figure out what to do as a player.

69

• It was difficult, a briefing screen would help.

• No I had no idea what to do.

What worked well?

• The cloak feature.

• Aslans ability to find the player.

• Distract Aslans with props.

• Hide in a room and see Aslans running past you.

• The paranoia effect the game gives you.

• The Aslans patrolling in squads.

What did not work well?

• The player could walk through chairs.

• The intro video could not be skipped.

• The agents can still see in dark spots.

• The minimap should have a indicator on players direction.

Extensions to gameplay

• An arrow pointing in the players facing direction would help.

• A power to run in a amount of time, like the cloak feature.

• Use shadows to hide in.

• Ability to make some sort of resistance to the Aslans.

• Open and close doors.

• Walk button

• Counter to know when cloak is done.

• Regeneration of health.

70

Appendix C

Screenshots

C.1 NoEsc Pictures

The following is four screen-shots from the game NoEsc.

Figure C.1: Intro sequence from NoEsc, Aslans running in the building.

71

Figure C.2: The cubicles room with the main character in focus.

72

Figure C.3: Player facing an objective, while Aslans are running towards her.

73

Figure C.4: An objective close to the fish tank.

74

Appendix D

DVD

D.1 DVD Content

The DVD contains the following parts:

• Code:

– NoEsc written in C++ with Visual C++ solution.

– BTTool written in C# with Visual C# solution.

• NoEsc game folder and installation instructions.

• NoEsc Report:

– Report as a PDF file.

– Folder with figures from the report.

• Subversion repositories.

75

	Introduction
	Game Design
	Game Summary
	Game Rules
	Visual Style
	AI Specification
	Difficulty
	Summary

	Source SDK
	Overview
	Existing AI
	The Code
	HUD
	Console
	Entities
	NPC Creation
	Think
	Sounds

	Hammer Editor
	Summary

	Artificial Intelligence
	Artificial Intelligence in Games
	AI Techniques
	Decision Trees
	Behaviour Trees
	Fuzzy Logic
	Bayesian Networks
	Neural Networks
	Choice

	Summary

	Design
	Behaviour Tree
	Constraints
	Choices
	Node Types

	BTTool
	AI Architecture
	Squad
	Communication
	Decision

	Level
	Nodes

	Summary

	Implementation
	Programming in Source
	Creation of Aslan
	Difficulty Levels
	Custom Nodes

	Level
	Intro sequence
	Objectives

	Summary

	Testing
	Sound Selector Test
	Play-testing
	The Test

	Summary

	Epilogue
	Reflection
	Source SDK
	BTTool
	NoEsc

	Conclusion
	Further Development
	Content
	Additional Behaviour

	Playtesting: SW802B
	Group SW802B

	Playtesting: SW803A
	Group SW803A

	Screenshots
	NoEsc Pictures

	DVD
	DVD Content

